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On strain localization in the high rate extension
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A simple analytical model for the adiabatic high strain rate extension of synthetic textile
fibers is presented. The model suggests that, for fibers with particular thermo-mechanical
and constitutive properties, initial nominally uniform strain distributions along the fiber will
tend to become non-uniform, with localization of axial strain into a thermally softened
region. To assess the usefulness of the model in predicting and interpreting fiber behavior, a
commercial nylon filament is investigated experimentally. Nylon filaments are extended to
break at a low, isothermal strain rate (0.0015 s−1) and at a high, adiabatic strain rate (70 s−1).
A dimensionless strain localization parameter (SLP), used to characterize the nylon filament
in the framework of the model, predicts strain localization to occur during extension at the
70 s−1 strain rate. Experimental load-extension curves exhibit a sharply reduced
elongation-to-break at the high strain rate, consistent with the predicted occurrence of
localized, versus uniform, straining. In addition, the transition from homogeneous to
localized straining appears to occur at elongations that correspond with the SLP attaining a
critical value for onset of localization. C© 2003 Kluwer Academic Publishers

1. Introduction
It is well known among fiber and textile scientists that
when certain synthetic fibers are extended to failure
at high-strain rates, the broken ends exhibit signs of
melting. When this phenomenon was first discussed in
the 1950’s [1], researchers realized that the observed
melting could only occur if a significant fraction of the
work done in extending the fiber to break was dissi-
pated locally around the site of the eventual rupture. At
that time, the specific mechanism through which such
localization of energy dissipation would occur was un-
clear. Now, of course, strain localization and material
instability phenomena are well known, and it is natu-
ral to consider the possibility that the melting seen in
high rate fiber extension tests is associated with the final
stages of a strain localization process involving thermal
softening.

This paper is concerned with the role of thermo-
mechanical coupling in the extension process, where
the energy and momentum balance in the extending
filament are tightly coupled through the temperature
dependence of the filament’s constitutive law. Gener-
ally, the mechanical behavior of polymeric materials is
highly sensitive to temperature, so modeling and under-
standing the effects of thermo-mechanical coupling is
an important research area. For a brief review of the lit-
erature concerning thermo-mechanical coupling in the
mechanics of polymeric materials, particularly works
relevant to fibers, readers may refer to reference [2].

In the present work, we generalize a simple analyti-
cal model [2] for the stability of homogeneous straining

motion in the high-rate extension of textile filaments
to treat a broad class of filaments exhibiting nonlinear
plastic load-strain behavior. Extension experiments on
a commercial nylon filament at a low and a high nom-
inal strain rate are presented, and the model is used to
interpret the experiments. The nylon filament’s high-
rate behavior is characterized using a dimensionless
strain localization parameter (SLP) that arises from the
model. The SLP is regarded as a function of the nylon
filament’s elongation and estimates are presented indi-
cating the onset of strain localization in high-rate exten-
sion at elongations of roughly 0.23–0.27. The experi-
ments show a significantly reduced elongation-to-break
for the high-strain rate tests—consistent with the pre-
dicted occurrence of localized, versus uniform, strain-
ing. Elongations-to-break in the high-rate tests are in
the same range as the predicted elongations for onset
of strain localization.

2. Mathematical model
In this section, we summarize and extend a mathemat-
ical model originally introduced in [2]. In the develop-
ment given here, the model is generalized to treat fibers
with nonlinear plastic load-strain behavior.

2.1. Constitutive model
In reference [2], a simple constitutive model was used
for the fiber’s plastic load-strain-temperature behav-
ior, where it was assumed that the isothermal plastic
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load-strain curve was linear. Here we reinterpret the
earlier model to apply broadly to fibers exhibiting non-
linear behavior. Consider the extension of a textile fiber.
Fiber behavior is elastic up to a yield point, beyond
which the fiber is plastically deformed. Our concern is
with the plastic extension of the fiber, and we restrict
our attention to the case where plastic strain is mono-
tonically increasing with time, i.e., the fiber does not
anywhere experience elastic unloading. The tension, p,
carried by the fiber is a function of axial strain, ε, tem-
perature, T , and axial strain rate, ε̇ , i.e., p = f (ε, T, ε̇).
Expanding in a Taylor series to the first order, the fiber
tension is written as,

p ∼= f (ε0, T0, ε̇0) + fε(ε0, T0, ε̇0)(ε − ε0)

+ fT(ε0, T0, ε̇0)(T − T0) + fε̇(ε0, T0, ε̇0)(ε̇ − ε̇0)

(1)

where ε > ε0, variable subscripts denote partial differ-
entiation with respect to that variable, and the subscript
0 denotes an arbitrary point in the process of plastically
extending the filament. Experimental results indicate a
logarithmic dependence of the plastic load on strain rate
[3], therefore we may neglect the term involving the first
partial with respect to ε̇ in Equation 1. In the analysis
to follow, we will investigate the stability of homoge-
neous straining motion of the fiber at an arbitrary point
in the extension process. Our constitutive model need
only represent a short duration of the filament extension
from the arbitrary point under consideration. Introduce
a dimensionless temperature θ = (T − T0)/T0, and
denote f (ε0, T0, ε̇0) as p0. Equation 1 is rewritten as,

p ∼= p0 − aθ + bε∗, (2)

where a is the thermal softening coefficient (a =
− fT(ε0, T0, ε̇0)T0), b is the strain hardening coefficient
(b = fε(ε0, T0, ε̇0)), and ε∗ = ε − ε0.

2.2. Equations of motion
and energy balance

Consider a fiber of length, l, density, ρ, and cross-
sectional area, A, held fixed at its end at x = 0 and
being extended by the motion of the end at x = l at
constant velocity ε̇0l. The nominal rate of strain, ε̇0,
is sufficiently high such that adiabatic conditions ap-
ply and the fiber is assumed to be fully plastic. We
investigate the motion of the fiber for a short duration
beginning at an arbitrary instant in time, t = 0. In-
troduce u(x, t) as the x displacement of points on the
fiber, where the displacement reference is the position
of points on the fiber at t = 0. The equation of motion
for a differential element of the fiber, length dx , mass
ρ Adx , may be written by considering the balance of
forces, Fig. 1, as

ρ A
∂2u

∂t2
= −a

∂θ

∂x
+ b

∂2u

∂x2
, (3)

where we make use of Equation 2, and the fact that
ε∗ = ∂u/∂x .

Figure 1 Dynamic force balance on differential element of fiber.

The portion of plastic work done on the differential
element of the fiber that is dissipated as heat raises the
thermal energy of the element. The remaining portion
of the plastic work done increases the internal energy
of the fiber element through structure changes, such
as increased molecular orientation. Forming the energy
balance, the time rate of change of thermal energy of
the element is equal to the rate at which plastic work
is dissipated in the element. The specific heat of the
fiber material is c and the fraction of plastic work that
is dissipated as heat is η. The rate of change of ther-
mal energy in the element is ρcAdx∂T /∂t and the rate
of energy dissipation in the element is ηpε̇∗ dx . Using
Equation 2, the definition of dimensionless tempera-
ture, θ , and that ε̇∗ = ∂2u/∂t∂x , the energy balance
may be written as

ρcAT0
∂θ

∂t
= η

(
p0 − aθ + b

∂u

∂x

)
∂2u

∂t∂x
(4)

Displacement boundary conditions at the fiber’s ends
for constant rate extension are

u(0, t) = 0, u(l, t) = ε̇0lt (5)

Homogeneous straining deformation of the fiber,
ε∗(x, t) = ε̇0t , results in a displacement field written as

u(x, t) = ε̇0xt. (6)

Dimensionless position, x∗, and time, t∗, coordinates
are defined as

x = lx∗, t = ρcAT0

ηaε̇0
t∗, (7)

and a dimensionless displacement, U , is defined as

u = lU (8)

Substitution of Equations 7 and 8 into 3 and 4 gives
the following dimensionless equation of motion and
equation of energy balance

∂2U

∂t∗2 + ρ Ac2T 2
0

η2aε̇2
0l2

(
∂θ

∂x∗ − b

a

∂2U

∂x∗2

)
= 0 (9)

and

∂θ

∂t∗ = η

ρcAT0

(
p0 − aθ + b

∂U

∂x∗

)
∂2U

∂t∗∂x∗ , (10)

respectively.

2.3. Stability analysis
Our aim is to investigate the stability of homogeneous
straining deformation by considering the dynamic re-
sponse to small disturbances in the velocity field along
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the fiber. In this regard, the dimensionless displacement
and temperature are considered the sum of the homoge-
neous straining response and a small perturbation due
to an initial disturbance at t∗ = 0. Introduce perturbed
displacement and temperature variables,

U (x∗, t∗) = UHS(x∗, t∗) + Ū (x∗, t∗),

θ (x∗, t∗) = θHS(t∗) + θ̄ (x∗, t∗)
(11)

where subscripts HS denote the homogeneous strain-
ing response and over-bars indicate the small pertur-
bation. The dimensionless homogeneous straining dis-
placement may be written, using Equations 6–8, as,

UHS = ρcAT0

ηa
x∗t∗ (12)

Substituting Equations 11 and 12 into 9, we obtain an
equation in the perturbed variables, written as,

∂2Ū

∂t∗2 + ρ Ac2T 2
0

η2aε̇2
0l2

(
∂θ̄

∂x∗ − b

a

∂2Ū

∂x∗2

)
= 0 (13)

Making the substitution of Equations 11 and 12 into 10,
we obtain

dθHS

dt∗ + ∂θ̄

∂t∗ = η

ρcAT0

(
p0 − aθHS − aθ̄ + b

ρcAT0

ηa
t∗

+ b
∂Ū

∂x∗

)(
ρcAT0

ηa
+ ∂2Ū

∂t∗∂x∗

)
(14)

By neglecting terms in Equation 14 involving the per-
turbations, an ordinary differential equation for θHS may
be obtained,

dθHS

dt∗ + θHS = p0

a
+ bρcAT0

ηa2
t∗ (15)

Subtracting (15) from (14), an equation for the pertur-
bations is obtained,

∂θ̄

∂t∗ + θ̄ − b

a

∂Ū

∂x∗ −
(

ηp0

ρcAT0
− ηa

ρcAT0
θHS + b

a
t∗

)

× ∂2Ū

∂t∗∂x∗
∼= 0 (16)

where small terms involving products of perturbations
have been neglected.

We consider the stability of uniform straining at an
arbitrary point in the extension process. At this arbitrary
point, the fiber temperature is T0. Therefore, the initial
condition on θHS is θHS(0) = 0. With this condition,
Equation 15 may be integrated to obtain

θHS =
(

bρcAT0

ηa2
− p0

a

)
e−t∗ −

(
bρcAT0

ηa2
− p0

a

)

+ bρcAT0

ηa2
t∗. (17)

Equation 17 may be substituted into Equation 16 to
obtain an equation containing only the perturbed vari-
ables, written as

∂θ̄

∂t∗ + θ̄ − b

a

∂Ū

∂x∗

−
{(

ηp0

ρcAT0
− b

a

)
e−t∗ + b

a

}
∂2Ū

∂t∗∂x∗
∼= 0. (18)

Equations 13 and 18 represent the dynamic behavior
of small motions in the neighborhood of the uniform
straining of the fiber with nominal strain rate ε̇0. The
stability of the homogeneous straining motion in the
small may be investigated by exploring the nature of
the solutions to the coupled equations given small initial
disturbances.

The perturbed variables are expressed as Fourier sine
and cosine series expansions, written as

Ū (x∗, t∗) =
∞∑

n=1

rn(t∗) sin(nπx∗) and

θ̄ (x∗, t∗) =
∞∑

n=1

qn(t∗) cos(nπx∗).

The sine series expansion selected for Ū satisfies
boundary conditions on the perturbed displacement,
Ū (0, t∗) = Ū (1, t∗) = 0. Substituting the Fourier ex-
pansions into Equations 13 and 18, we obtain two ordi-
nary differential equations in the unknown functions of
time, rn(t∗) and qn(t∗). Using linear operator notation,
qn and it’s derivatives may be eliminated to obtain a
single third-order equation in rn, written as

rn + r̈̇n − n2π2 ρ Ac2T 2
0 b

η2a2ε̇2
0l2

{
aηp0

bρcAT0
− 1

}
e−t∗

ṙn
∼= 0

(19)

where over-dots denote d
dt∗ ( ). Equation 19 may be re-

garded as a second-order equation in the unknown func-
tions, ṙn(t∗), forming the coefficients of a Fourier sine
series expansion of the perturbed velocity field, ∂Ū/∂t∗.

A solution involving modified Bessel functions may
be obtained for Equation 19 through a change of vari-
ables. Introduce a new independent variable, z = e−t∗ ,
and dependent variable, wn = ṙn. Substituting these
into Equation 19, computing the indicated derivatives,
gives the following second-order equation in wn(z)

z2w′′
n − zknwn = 0 (20)

where ( )′ = d
dz ( ) and kn = n2π2 ρ Ac2T 2

0 b
η2a2ε̇2

0l2 { aηp0

bρcAT0
− 1}.

The general solution to Equation 20 may be written as

wn(z) = Bn
√

z I1(2
√

knz) + Cn
√

zK1(2
√

knz) (21)

where I1 and K1 are modified Bessel functions of first
and second kinds of order one, and Bn and Cn are inte-
gration constants.
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Consider an initial slight disturbance in the velocity
field. The coefficients in a Fourier sine series expansion
of the disturbance are δn. Therefore, initial conditions
on ṙn(t∗) are ṙn(0) = δn and r̈n(0) = 0. In the new vari-
ables, the initial conditions become wn(1) = δn and
w′

n(1) = 0. Evaluation of the integration constants in
Equation 21 to satisfy the aforementioned initial con-
ditions gives

Bn

δn
= K0(2

√
kn) − k−1/2

n K1(2
√

kn) + K2(2
√

kn)

I0(2
√

kn)K1(2
√

kn) + I1(2
√

kn)K0(2
√

kn) + I1(2
√

kn)K2(2
√

kn) + I2(2
√

kn)K1(2
√

kn)
, (22a)

and

Cn

δn
= I0(2

√
kn) + k−1/2

n I1(2
√

kn) + I2(2
√

kn)

I0(2
√

kn)K1(2
√

kn) + I1(2
√

kn)K0(2
√

kn) + I1(2
√

kn)K2(2
√

kn) + I2(2
√

kn)K1(2
√

kn)
(22b)

where the I ’s and K ’s are modified Bessel functions
of the first and second kind, respectively, of the order
indicated by the subscript. We consider the evolution
of the perturbed velocity field with time by substituting
Equations 22a and b into Equation 21, and replacing
z with e−t∗ . For negative values of kn, which occur for
values of the parameter aηp0/bρcAT0 less than one, the
components of the perturbed velocity field are found to
decay, with some oscillation, reaching stationary values
less than their initial values, δn. In this case, since any
component of the Fourier expansion of the initial veloc-
ity disturbance will decay to an amplitude less than its
arbitrarily small initial value, it can be concluded that
the velocity disturbance will not grow in time. There-
fore, for values of the parameter aηp0/bρcAT0 less
than one, the homogeneous straining motion may be
considered stable.

Typical stable behavior of wn is exhibited in
Fig. 2. The value of ρ Ac2T 2

0 b
η2a2ε̇2

0l2 is taken to be one, and
aηp0/bρcAT0 is taken to be 0.5. Results for compo-
nents with n = 1, 5 and 10 are plotted.

For values of the parameter aηp0/bρcAT0 greater
than one, components of the perturbed velocity field are

Figure 2 Typical stable behavior of components of the perturbed velocity field, wn. Results shown here are for
ρ Ac2T 2

0 b

η2a2 ε̇2
0 l2 = 1, aηp0/bρcAT0 = 0.5.

found to grow in time, reaching final stationary values
that are generally much larger than their initial values.
Larger values of kn, corresponding to larger n, result
in larger final stationary values of wn. As the compo-
nents grow, eventually the small perturbation assump-
tion made in the analysis no longer holds. Therefore,
the present analysis simply indicates that the motion

of the fiber will tend to deviate initially from homoge-
neous straining at some point in the extension process
for which the parameter value becomes greater than
one. We denote aηp0/bρcAT0 as the strain localiza-
tion parameter, or SLP.

3. Experiments
A commercial nylon filament, about 140 µm in diame-
ter, sold for use as monofilament sewing thread, was
investigated. Filament specimens, nominally 60 mm
long, were extended to break at a strain rate of
0.0015 s−1 using an Instron test machine, and at a strain
rate of about 70 s−1 using a simple drop weight test
device. Here we will refer to the 0.0015 s−1 strain
rate extension tests as the “low-rate” tests and the
70 s−1 strain rate extension tests as the “high-rate”
tests.

A simple drop weight test device was used for the
high rate tests. The nylon filament specimen is at-
tached to a load cell (Entran Model ELFS-T3E-250N)
at the end of guide tube. A large clamp is attached
to the lower end of the specimen. A massive falling
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Figure 3 Typical load cell response in high rate extension test.

weight impacts the clamp, extending the specimen with
a nearly constant end velocity of 4.2 m s−1. The load
cell response is sampled at 40 kHz, as exhibited for a
typical test in Fig. 3.

The load cell/filament specimen connection was
made as lightweight as possible to minimize the ef-
fect of added sprung mass on the dynamic response
of the load cell. To form an end termination of the
filament specimen, the filament was wrapped around
a metal eye and secured with epoxy (typical mass of
eye/epoxy: 0.3 g). The eye was attached to a lightweight
hook (2.4 g) threaded onto the load cell stud. The nat-
ural frequency of the load cell/hook/eye system has
been found to be 4,500 Hz. A 4,500 Hz vibration can
be seen in the response curve in Fig. 3 in the later
stages of specimen extension and after specimen fail-
ure. The vibration masks the true magnitude of the
filament load as a function of time, however, the re-
sponse can still be used to accurately determine the
elongation-to-break.

Typical high-rate and low-rate load-elongation
curves are exhibited in Fig. 4. The load-time series
data from the high-rate tests was converted to load-
elongation series data by computing the displacement
of the specimen end based on the elapsed time after
impact and the velocity of the falling weight and subse-
quently dividing the end displacement by the specimen
gage length. It can be seen that specimen breaks at a

Figure 4 Typical low rate (solid line) and high rate (dotted line) load-
elongation curves.

TABLE I Elongation-to-break (%) for 60 mm nylon filaments

High-rate tests 18.99
22.12
24.27
24.49
25.34
25.75
26.90
28.07
28.42

Low-rate tests 28.21
30.02
31.2
31.5
31.67
31.85
32.05
32.24
32.24
33.38
33.9
37.54

lower elongation in the high-rate test as compared with
the low-rate test.

Elongation-to-break results for the high-rate and low-
rate tests are presented in Table I. For consistency, in the
high-rate tests, the elongation-to-break was defined as
the first elongation data point recorded during the load
drop associated with failure. The experimental distribu-
tions for elongation-to-break in the high-rate and low-
rate tests are plotted in Fig. 5. It can be seen that there
is very little overlap in the distributions. As expected,
applying the Smirnov test [4], the hypothesis that the
high and low rate sample distributions come from the
same population is rejected at the 0.01 significance
level.

To determine the elongation at which plastic defor-
mation initiates in extension of the nylon filament, a
series of tests were performed in which specimens
were extended to a prescribed maximum elongation
and then slowly unloaded back down to zero elonga-
tion (original gage length). After allowing specimens to
rest overnight, measurements were made of specimen
length to determine the presence of permanent set. It
was found that plastic deformation set in at about 12%
elongation.

Figure 5 Experimental cumulative distribution functions for elongation-
to-break in low rate (solid line) and high rate (dotted line) extension tests.
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4. Discussion
The stability analysis has shown that initially homo-
geneous adiabatic plastic extension of a textile fiber
tends to become non-homogeneous at a point in the
process where the strain localization parameter attains
a value greater than one. As the non-homogeneity de-
velops, strain will become increasingly localized into a
region(s) of locally higher temperature, instead of uni-
formly distributed along the filament. While the present
analysis applies only to the initial period of localization,
it is likely that after this initial phase, strain localiza-
tion will continue to grow more pronounced with con-
tinued extension. Typically in localization phenomena,
regions of increasing deformation become contained in
narrow bands, as elastic unloading occurs outside the
bands [5]. Elastic unloading was not included in the
present model, as it would not occur in the initial de-
velopment of the localization. Strain energy released by
elastic unloading provides an additional energy source
driving further plastic deformation within the strain lo-
calization band, promoting further localization. Physi-
cal reasoning suggests that SLP values greater than one
indicate the development of a localized straining mode
of extension that will persist through to the eventual
rupture of the filament within a localization band.

In filament specimens of length far greater than the
filament diameter, it is reasonable to expect that the
localization band will be a small fraction of the spec-
imen length. Rupture of the specimen should occur
soon after the development of the localization band,
and the elongation-to-break of the specimen should be
very close to the elongation at which strain localization
initiates.

In this section, we estimate the value of the SLP as
the specimen is extended. For a rough estimate, quanti-
ties that may vary 10% or less during extension will be
treated as constants, therefore, η will be assigned the
value 0.8, consistent with results in [6], and the fila-
ment temperature, T0, which calculations indicate may
increase by 20◦C during homogenous straining [7], will
be assigned the value 297 K (room temperature during
the experiments). The mass per unit length of the fila-
ment, ρ A, was found to be 0.0185 g m−1, and specific
heat c = 1.43 J g−1 K−1 for nylon.

To investigate and quantify the thermal softening co-
efficient, a, elevated temperature (57.5◦C) extension
tests were done on 60 mm specimens at the 0.0015 s−1

strain rate and compared with the room temperature
low-rate tests. A hot air blower was used to maintain
the filament temperature during the test. Because of the
fineness of the filament, thermal equilibrium is reached
after seconds of immersion in the hot air flow, so the
procedure was to turn on the hot air blower and im-
mediately begin the extension test. It turns out that the
elevated temperature curves are shifted downward to a
lower load by a nearly constant value of 2.5 N for elon-
gations greater than about 14%. Using Equation 2 and
the temperature change of 33.5◦C, a was determined to
have a constant value of 22 N.

The other constitutive parameters, p0 and b, can vary
greatly during the extension process, as can be seen in
Fig. 4. The parameter b is essentially the slope of the

Figure 6 Behavior of parameter b with increasing elongation estimated
from a typical low rate load-elongation curve.

load-elongation curve. In Fig. 6, b is estimated from
a typical low rate test. The value of b is seen to vary
from over 60 N at the onset of plastic extension to about
14 N at filament rupture. The parameter p0, the current
value of the plastic load, increases from about 5 N at
the beginning of plastic deformation to over 10 N at
failure in the low-rate tests.

The value of the strain localization parameter with
increasing elongation is exhibited in Fig. 7, where p0
and b have been treated as functions of elongation. The
estimates were calculated based on five typical low-
rate load-extension curves. At the beginning of plastic
extension, the estimated value of the strain localization
parameter is about 0.18. The value of the SLP steadily
increases with increasing extension, attaining a value
of one at elongations ranging from 0.23 to 0.27.

As the nylon filament is plastically extended at a
high rate, the SLP is initially well below the threshold
required for the strain localization process to be trig-
gered. Therefore, for some time, we expect that the fila-
ment will extend more or less homogenously. A point is
reached, however, when the current value of the plastic
load becomes sufficiently high, and the strain harden-
ing coefficient becomes sufficiently low, that the SLP
attains values of one or greater. The strain localization
process begins and localization bands rapidly develop,
the initial process being further reinforced by elastic

Figure 7 Behavior of SLP with increasing elongation determined from
five typical low rate load-elongation curves.
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unloading in the filament outside the developing local-
ization bands. Recalling the argument given earlier in
this section, the likely size of the bands being many
orders of magnitude less than the filament specimen
length, the elongation-to-break may be expected to be
approximately equal to the elongation at the onset of
localization.

The estimates for elongation values corresponding to
the onset of strain localization in high-rate extension,
falling in the range of 0.23 to 0.27, compare favorably
with the high-rate elongation-to-break results (mean:
0.25) given in Table I. The good agreement between
the estimated elongation at onset of localization and
the experimental high rate elongation-to-break results
supports the above interpretation of the localization and
failure process, and corroborates the stability analysis.

5. Conclusions
A stability analysis of homogeneous straining motion
in the adiabatic high-rate extension of textile fibers has
been presented. For particular values of a strain lo-
calization parameter (SLP) involving constitutive and
thermo-physical properties of the fiber, it was shown
that initially homogeneous straining motion of the
fiber tends to become non-homogeneous (localized)
with continued extension. Physical reasoning was given

suggesting that, once begun, strain localization intensi-
fies and persists with increasing extension to the point of
final filament rupture. High-rate and low-rate extension
experiments on nylon filaments were presented that ex-
hibited reduced elongation-to-break at the high-strain
rate, consistent with predictions made using the SLP of
the occurrence of localized, versus uniform, straining.
In addition, the transition from homogeneous to local-
ized straining was shown to occur at elongations that
correspond with the SLP attaining a critical value for
onset of localization.
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